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Abstract
We analyse the Wigner function in prime power dimensions constructed on the
basis of the discrete rotation and displacement operators labelled with elements
of the underlying finite field. We separately discuss the case of odd and even
characteristics and analyse the algebraic origin of the non-uniqueness of the
representation of the Wigner function. Explicit expressions for the Wigner
kernel are given in both cases.

PACS numbers: 03.67.−a, 03.65.Ca

1. Introduction

Wootters’ construction of the Wigner function [1, 2] in the discrete phase space for quantum
systems whose dimension d = pn is a power of a prime number has been applied for the
analysis of several problems, mainly related to quantum information processes [3–6]. In this
case, the phase space is a d × d grid with a well-defined geometrical structure (the so-called
finite geometry) [7], which is a direct consequence of the underlying finite field (Galois field)
structure, so that the phase-space coordinates can be chosen as elements of the corresponding
finite field [1, 2]. The Wigner function (a discrete symbol of the density matrix) is constructed
using the so-called phase point operators and consists of a highly non-unique procedure of
association of states in the Hilbert space with some geometrical structures (lines) in the discrete
phase space.

Slightly different, operational approaches to the Wigner function construction, based on
the algebraic structure of the Galois fields, have been recently [8–11] proposed for the quantum
systems of prime power dimensions, although for the prime dimensions such constructions
were also discussed earlier [13, 14].

In the present paper we analyse the Wigner function constructed on the basis of the discrete
rotation and displacement operators labelled with the elements of the underlying finite field.
We separately discuss the case of odd and even characteristics and analyse the algebraic origin
of the non-uniqueness of the representation of the Wigner function in both cases. The main
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difference with Wootters’ method consists of labelling the elements of the Hilbert space and
the operators acting on this space directly by the elements of the finite field [12], so that the
possible factorizations of the corresponding operators appear as a result of choosing a different
basis in the field, and are not really necessary for the phase space construction.

The paper is organized as follows. In section 2 we outline the structure of the generalized
Pauli group and introduce the Wigner mapping as that which satisfies the Stratonovich–Weyl
postulates and shows the phase problem for the displacement operator. In section 3 we analyse
the rotation operators for fields of odd and even characteristics and discuss the discrete phase
space construction. In section 4 we briefly outline the reconstruction procedure. In section 5
we discuss different possibilities for ordering points in the phase space with elements of the
finite field. In section 6 we analyse the relation between abstract states and states of physical
systems. Several useful relations are proved in the appendices.

2. General definitions

In the case of prime power dimensions, d = pn, the phase-space representation can be
constructed in a similar way as in the prime dimensions [1, 13]. We perform the Wigner
mapping in a slightly different manner than in [2], by using the generalized position and
momentum operators introduced in [12] (see also [8]). In the case of composite dimensions
instead of natural numbers we have to use the elements of the finite field GF(d) to label the
states of the system and operators acting on the corresponding Hilbert space. In particular, we
will denote as |α〉, α ∈ GF(d) (in the case of Zp we shall use Latin characters, instead) an
orthonormal basis in the Hilbert space of the quantum system, 〈α|β〉 = δα,β . Operationally,
the elements of the basis can be labelled by powers of primitive elements (see appendix A).
These vectors will be considered as eigenvectors of the generalized position operator which
belong to the generalized Pauli group. The generators of this group, usually called generalized
position and momentum operators, are defined as follows,

Zβ |α〉 = χ(αβ)|α〉, Xβ |α〉 = |α + β〉, α, β ∈ GF(d), (1)

Z
†
β = Z−β, X

†
β = X−β, (2)

so that

ZαXβ = χ(αβ)XβZα,

where χ(θ) is an additive character [7]

χ(θ) = exp

[
2π i

p
tr(θ)

]
, (3)

and the trace operation, which maps the elements of GF(d) into the prime field GF(p) � Zp,
is defined as

tr(θ) = θ + θp + θp2
+ · · · + θpn−1

.

This operation leaves the elements of the prime field (see appendix A) invariant. The characters
(3) satisfy the following important properties,∑

α∈GF(d)

χ(αβ) = dδ0,β , χ(α + β) = χ(α)χ(β), (4)

similar to the well-known identities in the prime case
p−1∑
m=0

ωmn = pδn,0, ωm+n = ωmωn,

where ω = exp[2π i/p] is a root of unity.
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In particular, for the prime dimensional case (d = p), the position and momentum
operators act in the standard basis |n〉, n = 0, . . . , p − 1, as follows [15]:

Z|n〉 = ωn|n〉, X|n〉 = |n + 1〉, ZX = ωXZ, (5)

where all the algebraic operations are on mod(p), n ∈ Zp, and the rest of the operators,
analogous to Zα and Xβ , can be obtained as powers of Z and X.

It is worth noting that there is a single element of this basis (sometimes called stabilizer
state), labelled with the zero element of the field, which is a common eigenstate of all Zβ with
all the eigenvalues equal to unity:

Zβ |0〉 = |0〉,
for any β ∈ GF(d).

The operators (1) are related through the finite Fourier transform operator [12]

F = 1√
d

∑
α,β∈GF(d)

χ(αβ)|α〉 〈β| , FF † = F †F = I, (6)

so that

FXαF † = Zα, (7)

and F 4 = I for d = pn where p �= 2, and F 2 = I for d = 2n. The Fourier transform offers us
the possibility of introducing the conjugate basis, which is related to the basis |α〉 as follows,

|̃α〉 = F |α〉, Zβ |̃α〉 = |α̃ + β〉, Xβ |̃α〉 = χ∗(αβ) |̃α〉 , (8)

so that the elements of the conjugate basis are eigenvectors of the momentum operators.
The operators Zα and Xβ are particular cases of the so-called displacement operators

which, in general, have the form

D(α, β) = φ(α, β)ZαXβ, (9)

and the phase factor φ(α, β) is such that the unitary condition,

D(α, β)D†(α, β) = I,

is satisfied, implying that

φ(α, β)φ∗(α, β) = 1. (10)

The operational basis (9) becomes orthogonal,

Tr[D(α1, β1)D(α2, β2)] = dδ−α1,α2δ−β1,β2 ,

where Tr means the operational trace in the Hilbert space, or equivalently D†(α, β) =
D(−α,−β), if the phase φ(α, β) satisfies the following condition,

φ(α, β)φ(−α,−β) = χ(−αβ), (11)

and for the particular case of the fields of even characteristic, char (GF(d)) = 2, implies that

φ2(α, β) = χ(αβ), (12)

which is equivalent to D†(α, β) = D(α, β).
In general, the displacement operators are non-Hermitian and thus cannot be used for

mapping Hermitian operators into real phase-space functions. Nevertheless, a desirable
Hermitian kernel can be defined as the following transformation [8, 10] of the displacement
operator (9):

	(α, β) = 1

d

∑
κ,λ∈GF(d)

χ(αλ − βκ)D(κ, λ). (13)
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This operator can be used for mapping operators into phase-space functions in a self-consistent
way and satisfies the Stratonovich–Weyl postulates [16]:

hermiticity: 	(α, β) = 	†(α, β), (14)

if condition (11) (or (12) in the case p = 2) is satisfied;

normalization:
1

d

∑
α,β∈GF(d)

	(α, β) = I ;

covariance: D(κ, λ)	(α, β)D†(κ, λ) = 	(α + κ, β + λ);
and the

orthogonality relation: Tr(	(α, β)	†(α′, β ′)) = dδα,α′δβ,β ′ .

Since the Stratonovich–Weyl postulates are satisfied, the symbol of an operator f is
defined in the standard way,

Wf (α, β) = Tr[f 	(α, β)], (15)

and the inversion relation is

f = 1

d

∑
α,β∈GF(d)

Wf (α, β)	(α, β).

The overlap relation has the standard form

Tr(fg) = d
∑

α,β∈GF(d)

Wf (α, β)Wg(α, β),

and, as a particular case, the average value of the operator f is calculated as

〈f 〉 = d
∑

α,β∈GF(d)

Wf (α, β)Wρ(α, β),

where ρ is the density matrix.
In terms of the expansion coefficients of the operator f in the operational basis (9)

f =
∑

α,β∈GF(d)

fα,βD(α, β), (16)

the symbol of f has the form

Wf (α, β) =
∑

κ,λ∈GF(d)

fκ,λχ
∗(αλ − βκ). (17)

As some simple examples, we obtain that the symbols of the operators Zκ and Xλ are

WZκ
(α, β) = χ(βκ), WXλ

(α, β) = χ(−αλ), (18)

and in the particular case of prime dimensions we get for the symbols of (5),

WZ(a, b) = ωb, WX(a, b) = ω−a,

where a, b ∈ Zp. In the same way, the symbols of the basis states |κ〉 and |̃κ〉 are

W|κ〉〈κ|(α, β) = δβ,κ , W|̃κ〉〈̃κ|(α, β) = δα,κ .



Geometrical approach to the discrete Wigner function in prime power dimensions 14475

3. Discrete phase space construction

3.1. Lines and rays

In the discrete space GF(d) × GF(d) the concept of line can be introduced in a similar way
as in the continuous plane case, so all the points (α, β) ∈ GF(d) × GF(d) which satisfy the
relation

ζα + ηβ = ϑ,

where ζ, η, θ are some fixed elements of GF(d), form a line. Moreover, two lines,

ζα + ηβ = ϑ, ζ ′α + η′β = ϑ ′, (19)

are called parallel if they have no common points, which implies that ηζ ′ = ζη′. If the lines
(19) are not parallel they cross each other at a single point with the coordinates

α = (ηϑ ′ − η′ϑ)(ζ ′η − ζη′)−1, β = (ζϑ ′ − ζ ′ϑ)(ζη′ − ζ ′η)−1.

A line which passes through the origin is called a ray and its equation has the form

α = 0, or β = µα (20)

so that α = 0 and β = 0 are the vertical and horizontal axes, correspondingly.
Each ray is characterized by the value of the ‘slope’ µ and we denote by λµ the ray which

is a collection of points satisfying β = µα and by λ∞ the ray corresponding to the vertical
axis.

There are d − 1 parallel lines to each of d + 1 rays, so that the total number of lines is
d(d + 1). The collection of d parallel lines is called a striation [2].

3.2. Displacement operators

The displacement operators labelled with points of the phase space belonging to the same ray
commute (here we omit the phase factor):

Zα1Xβ1=µα1Zα2Xβ2=µα2 = χ(−µα1α2)Zα1+α2Xµ(α1+α2) = Zα2Xβ2=µα2Zα1Xβ1=µα1 ,

and thus have a common system of eigenvectors
{∣∣ψµ

ν

〉
, µ, ν ∈ GF(d)

}
:

ZαXµα

∣∣ψµ
ν

〉 = exp(iξµ,ν)
∣∣ψµ

ν

〉
, (21)

where µ is fixed and exp(iξµ,ν) is the corresponding eigenvalue, so that
∣∣ψ0

ν

〉 ≡ |ν〉 are
eigenstates of the Zα operators (displacement operators labelled with the points of the ray
β = 0 horizontal axis) and

∣∣ψ̃0
ν

〉 = F
∣∣ψ0

ν

〉 ≡ |ν̃〉 are the eigenstates of the Xβ operators
(displacement operators labelled with the points of the ray α = 0 vertical axis).

In the simplest cases, d = 3 and d = 4, the rays are drawn in tables 1 and 2, and the
corresponding displacement operators have the form (up to a phase)

d = 3 d = 4
ray equation displacement operators ray equation displacement operators

b = 0 Z,Z2 β = 0 Zσ ,Zσ 2 , Zσ 3

b = a ZX,Z2X2 β = α ZσXσ ,Zσ 2Xσ 2 , Zσ 3Xσ 3

b = 2a ZX2, Z2X4 = Z2X β = σα ZσXσ 2 , Zσ 2Xσ 3 , Zσ 3Xσ

a = 0 X,X2 β = σ 2α ZσXσ 3 , Zσ 2Xσ ,Zσ 3Xσ 2

α = 0 Xσ ,Xσ 2 , Xσ 3

where σ is the primitive element, a root of the polynomial σ 2 + σ + 1 = 0.
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Table 1. The four possible rays in the d = 3 case. The axes are labelled by natural numbers
0, 1, 2. The points of each ray are labelled by the value of the corresponding slope, so that the
vertical axis (the ray α = 0) is labelled as ∞.

Table 2. The five possible rays in the d = 4 case. The axes are labelled by powers of the primitive
element σ . The points of each ray are labelled by the value of the corresponding slope: σ, σ 2, σ 3.

It is easy to observe that an arbitrary displacement operator ZτXυ acting on an eigenstate
of the set {ZαXµα, µ is fixed, α ∈ GF(d)} transforms it into another eigenstate of the same
set:

ZαXµα

[
ZτXυ

∣∣ψµ
ν

〉] = exp(iξµ,ν)χ(αυ − µατ)ZτXυ

∣∣ψµ
ν

〉
.

It is clear that if υ = µτ we do not generate another state (in other words we do not change
the index ν). Because for an arbitrary υ one can always find such � that υ = µτ + �, we
can generate all the states from the set {∣∣ψµ

0

〉
, µ is fixed} by applying only the momentum

operators Xυ (where υ runs through the whole field) to any particular state belonging to this
set. It is clear that all the eigenstates of Xβ operator can be obtained by applying the Zα

operator to any particular state from the set
{∣∣ψ̃µ

0

〉}
.

3.3. Rotation operators

The ‘rotation’ operators Vµ′ which transform eigenstates of the operators associated with the
ray β = µα {

I, Zα1Xµα1 , Zα2Xµα2 , . . .
}

(22)

into eigenstates of the operators labelled with points of the ray β = (µ + µ′)α,{
I, Zα1X(µ+µ′)α1 , Zα2X(µ+µ′)α2 , . . .

}
, (23)

are defined through the relations

VµZαV †
µ = exp(iϕ (α,µ))ZαXµα, [Vµ,Xν] = 0, V0 = I, (24)

for all µ, ν ∈ GF(d).
In fact,

∣∣ψµ
ν

〉
(21) being a state assigned to the ray β = µα, we obtain after simple algebra

Vµ′ZαXµα

∣∣ψµ
ν

〉 = Vµ′ZαXµα

(
V

†
µ′Vµ′

)∣∣ψµ
ν

〉 = exp(iξµ,ν)Vµ′
∣∣ψµ

ν

〉
= exp(iϕ(α,µ′))ZαX(µ+µ′)αVµ′

∣∣ψµ
ν

〉
,

that is

ZαX(µ+µ′)α
[
Vµ′
∣∣ψµ

ν

〉] = exp(i(ξµ,ν − ϕ(α,µ′)))
[
Vµ′
∣∣ψµ

ν

〉]
, (25)
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i.e. the state Vµ′
∣∣ψµ

ν

〉
is an eigenstate of the set (23). This means that we can interpret the

action of the Vµ operator as a ‘rotation’ in the discrete phase space,

λµ

Vµ′→ λµ+µ′, (26)

although care should be taken in the case of fields GF(2n), as we will discuss below. Note
that one cannot reach the vertical axis by applying Vµ to any other ray.

The explicit form of Vµ can be found taking into account that it is diagonal in the conjugate
basis (24):

Vµ =
∑

κ∈GF(d)

cκ,µ |̃κ〉〈̃κ|, c0,µ = 1. (27)

Transforming the position operator Zα with Vµ,

VµZαV †
µ =

∑
κ∈GF(d)

cκ+α,µc∗
κ,µ|κ̃ + α〉〈̃κ|

and taking into account that

ZαXµα =
∑

κ∈GF(d)

χ(−µακ)|κ̃ + α〉〈̃κ|,

we find that the coefficients cκ satisfy the following condition:

cκ+α,µc∗
κ,µ = exp(iϕ (α,µ))χ(−µακ).

In particular, for κ = 0 we obtain

exp(iϕ(α,µ)) = cα,µc∗
0,µ = cα,µ, (28)

that is

cκ+α,µc∗
κ,µ = cα,µχ(−µακ), (29)

and substituting α = 0 we get |cκ,µ|2 = 1, which also follows from the unitary condition
VµV †

µ = V †
µVµ = I .

It is easy to note that equation (29) is automatically satisfied after the substitution

cα,µ → cν
α,µ = cα,µχ(−αν),

which means that different sets of operators Vµ have the form

Vµ,ν = VµXν, (30)

where Vµ is constructed using an arbitrary solution of equation (29).

3.3.1. Fields of odd characteristic. In the case of fields of odd characteristic, we impose an
additional restriction on the rotation operators: we demand that Vµ form an Abelian group,

VµVµ′ = Vµ+µ′, (31)

which implies that cκ,µcκ,µ′ = cκ,µ+µ′ and in particular c∗
κ,µ = cκ,−µ, leading to the relation

V †
µ = V−µ. In this case relation (26) is well defined, i.e. the operator Vµ transforms a state

associated with the ray λµ into a state associated with the ray λµ+µ′ . It can be shown (see
below) that condition (31) cannot be satisfied for the fields of even characteristic, so that this
case should be considered separately.

Then, a solution of equation (29) can be easily found,

cκ,µ = χ(−2−1κ2µ), (32)
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so that

Vµ =
∑

κ∈GF(d)

χ(−2−1κ2µ)|̃κ〉〈̃κ|. (33)

In the prime field case, GF(p), p �= 2, the whole set of rotation operators is produced by
taking powers of a single operator [13]:

V =
p−1∑
k=0

ω(−2−1k2)|̃k〉〈̃k|.

In particular, the state V m′ ∣∣ψm
0

〉
is associated with the ray b = (m + m′)a, where the algebraic

operations are mod p, so that

λ0
V→ λ1, λ0

V→ λ1
V→ λ2︸ ︷︷ ︸

V 2

, etc.

3.3.2. Fields of even characteristic. The situation is more complicated for fields of
char (GF(d)) = 2. In fact, it follows from (29) that (substituting κ = α)

c2
α,µ = χ(α2µ). (34)

The solution of the above equation is not unique and thus there is an ambiguity in solving
equation (29) (see appendix B).

One of the consequences of this ambiguity is that operators of the form (27), where cκ,µ

is a particular (for a fixed value of µ and κ ∈ GF(2n)) solution of (29), do not form a group.
In particular, the operator V 2

µ is not the identity operator. In fact, using (34) we have

V 2
µ =

∑
κ∈GF(2n)

c2
κ,µ |̃κ〉〈̃κ| =

∑
κ∈GF(2n)

χ(κ2µ)|̃κ〉〈̃κ|,

which, due to the property tr α = tr α2, α ∈ GF(2n), can be transformed into

V 2
µ =

∑
κ∈GF(2n)

χ
(
κµ2n−1)|̃κ〉〈̃κ| = X

µ2n−1 , (35)

where the relation κ2µ = (κµ2n−1)2
has been used.

It also follows from (35) that inside the set {Vµ,µ ∈ GF(2n)} an inverse operator to a
given Vµ from this set does not exist. To find the inverse operator to some Vµ we have to
extend the set {Vµ,µ ∈ GF(2n)} to the whole collection of all the possible rotation operators
defined in (30), i.e. to the set {Vµ,ν, µ, ν ∈ GF(2n)}. Then, it is easy to conclude from (35)
that

(Vµ,ν)
−1 = V

µ,µ2n−1 +ν
,

which implies the following relation between cα,µ:

c∗
α,µ = χ

(
αµ2n−1)

cα,µ. (36)

We will fix the operator Vµ,ν=0 is such a way (see appendix B) that the coefficients cκ,µ,
corresponding to the basis elements of the field, κ = σ1, . . . , σn, are chosen positive, so that
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we have

cκ,µ = χ


µ

n−1∑
i=1

kiσi

n∑
j=i+1

kjσj


�n

l=1

√
χ
(
k2
l σ

2
l µ
)
, (37)

κ =
n∑

i=1

kiσi, ki ∈ Z2, (38)

where {σi, i = 1, . . . , n} are the elements of the basis and the principal branch of the square
root in (37) is chosen. All the other possible rotating operators can be obtained according
to (30).

The whole set of operators {Vµ,ν, µ, ν ∈ GF(2n)} form a group. Let us pick two operators
Vµ and Vµ′ constructed according to (37). Using the properties (24) and (28), we obtain

VµVµ′ZαV
†
µ′V

†
µ = cα,µcα,µ′ZαX(µ+µ′)α. (39)

On the other hand we have

Vµ+µ′ZαV
†
µ+µ′ = cα,µ+µ′ZαX(µ+µ′)α,

which suggests that (recall that |cα,µ| = 1)

cα,µcα,µ′ = exp(if (α,µ,µ′))cα,µ+µ′ , (40)

where f (α,µ,µ′) = f (α,µ′, µ) is a real function of α,µ, and µ′. Note that due to the
property (29), the function f (α,µ,µ′) depends linearly on the parameter α, in the sense that
f (α + β,µ,µ′) = f (α,µ,µ′) + f (β,µ,µ′). The complex conjugate of (40) together with
(36) leads to the condition exp(if (α,µ,µ′)) = exp(−if (α,µ,µ′)) = ±1 ∈ Z2. Because
every linear map from α ∈ GF(pn) to GF(p) � Zp is of the form of a character [7],
α → χ(αβ), β ∈ GF(pn), the function exp(if (α,µ,µ′)) can be represented as

exp(if (α,µ,µ′)) = χ(αf (µ,µ′)).

It follows from (40) and from the above equation that there exists ν = f (µ,µ′) (see
appendix C) so that

VµVµ′ZαV
†
µ′V †

µ = XνVµ+µ′ZαV
†
µ+µ′X

†
ν = cα,µ+µ′χ (αν) ZαX(µ+µ′)α, (41)

which immediately leads to the relation

VµVµ′ = Vµ+µ′Xf (µ,µ′).

Finally, in general we have

Vµ,νVµ′,ν ′ = Vµ+µ′,ν+ν ′+f (µ,µ′).

3.4. Phase space construction

We can associate the lines in the discrete phase space with states in the Hilbert space according
to the following construction.

1. The eigenstate of {Zα} operators with all eigenvalues equal to 1, |0〉 = ∣∣ψ0
0

〉
, (note that

such a state is unique) is associated with the horizontal axis β = 0. It is worth noting
that such an association is arbitrary and in some sense fixes a definite class of quantum
nets [2].
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2. All the other states of the ‘first’ striation are obtained by applying the displacement
operator Xν to |0〉, so that the state

∣∣ψ0
ν

〉 = Xν |0〉 is associated with the horizontal line
which crosses the vertical axis at the point (0, ν), i.e. with the line β = ν. The states

∣∣ψ0
ν

〉
are eigenstates of the set {Zα},

Zα

∣∣ψ0
ν

〉 = χ(αν)XνZα|0〉 = χ(αν)
∣∣ψ0

ν

〉
, (42)

and form an orthonormal basis
〈
ψ0

ν

∣∣ψ0
ν ′
〉 = δνν ′ .

3. All the other striations are constructed as follows: first we apply the rotation operator Vµ

to the state |0〉 and the obtained state
∣∣ψµ

0

〉 = Vµ|0〉 is associated with the ray β = µα.
The state

∣∣ψµ

0

〉
is an eigenstate of the set {ZαXµα} according to (25). It is worth noting that

different sets of rotation operators can be chosen, which leads to different associations
between states and lines (see discussion below).

4. All the other states of the µth striation are obtained by applying the operator Xν to the
state

∣∣ψµ

0

〉
: ∣∣ψµ

ν

〉 = Xν

∣∣ψµ

0

〉
. (43)

The states
∣∣ψµ

ν

〉
are eigenstates of the set {ZαXµα},

ZαXµα

∣∣ψµ
ν

〉 = exp(−iϕ(α,µ))VµZαV †
µXνVµ|0〉

= exp(−iϕ(α,µ))VµZαXν |0〉
= χ(αν) exp(−iϕ(α,µ))XνVµ|0〉
= χ(αν) exp(−iϕ(α,µ))

∣∣ψµ
ν

〉
,

and are associated with the lines β = µα + ν. The phase exp(−iϕ(α,µ)) in the above
equation is defined in (24).

Note that
∣∣ψµ

ν

〉 = Vµ,ν |0〉, where Vµ,ν is defined in (30). As was shown in [12], the
states (43) form mutually unbiased bases (MUBs) [17],

∣∣〈ψµ
ν

∣∣ψµ′
ν ′
〉∣∣2 = 1

d
, µ �= µ′,

which have been extensively discussed from different points of view in recent papers
[11, 12, 18, 19]. In particular, it is known [2, 9] that different MUBs can be associated
with different striations.

In our approach we note that the inner product of two states associated with lines can
be rewritten as follows,〈

ψµ
ν

∣∣ψµ′
ν ′
〉 = 〈0|V †

µX†
νXν ′Vµ′ |0〉 = 〈0|Xν ′−νVµ′−µ|0〉

=
∑

κ∈GF(d)

cκ,µ′−µ〈ν − ν ′ |̃κ〉〈̃κ|0〉, (44)

so that, taking into account 〈ν |̃κ〉 = χ(κν)/d1/2, we obtain

〈
ψµ

ν

∣∣ψµ′
ν ′
〉 = 1

d

∑
κ∈GF(d)

cκ,µ′−µχ(κ(ν − ν ′)) = 1

d
�

µ,µ′
ν,ν ′ .

Then, we get ∣∣�µ,µ′
ν,ν ′
∣∣2 =

∑
κ,κ ′∈GF(d)

cκ,µ′−µc∗
κ ′,µ′−µχ((κ − κ ′)(ν − ν ′)),
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so that after changing the index κ−κ ′ = λ, and making use of relation (29) we immediately
obtain ∣∣�µ,µ′

ν,ν ′
∣∣2 =

∑
κ ′,λ∈GF(d)

cλ,µ′−µχ(−(µ′ − µ)λκ ′)χ(λ(ν − ν ′))

=
{

d2δν,ν ′ µ = µ′

d
∑p−1

λ=0 cλ,µ′−µχ(λ(ν − ν ′))δ0,λ = d µ �= µ′.

The first relation corresponds to the inner product of states belonging to the same striation,
i.e. to the same basis, and from the second relation one can observe that different striations
correspond to different MUBs.

5. The state associated with the vertical axis β is obtained from |0〉 by applying the Fourier
transform operator:

|0̃〉 = F |0〉. (45)

The state (45) is an eigenstate of the set {Xβ, β ∈ GF(d)} with all eigenvalues equal to
unity: Xβ |0̃〉 = |0̃〉. The vertical lines, parallel to the axis β, crossing the axis α at the
points α = ν are associated with the states

∣∣ψ̃0
ν

〉 = Zν |0̃〉, which are eigenstates of the
set {Xβ}:

Xβ

∣∣ψ̃0
ν

〉 = χ(−βν)ZνXβ |0̃〉 = χ(−βν)
∣∣ψ̃0

ν

〉
.

It is clear that ∣∣〈ψµ
ν

∣∣ψ̃0
ν ′
〉∣∣2 = 1

d
.

For the fields of odd characteristics we can always choose the set of rotation operators in
such a way that they form a group, which in particular means that a consecutive application
of any Vµ from this set returns us to the initial state: V

p
µ = I . This does not hold for the

fields of even characteristic due to equation (35), which can be interpreted as follows: the
first application of the rotation operator Vµ transforms a state associated with the ray of some
striation to a state corresponding to a ray from another striation. The second application of
Vµ does not return to the initial state (as could be expected from (26)), but to a state which
belongs to the original striation but displaced by X

µ2n−1 . So that, from the geometrical point
of view the operator V 2

µ for GF(2n) transforms a ray from some striation to a parallel line
from the same striation.

3.5. The phase of the displacement operator

The phase ϕ(α,µ) which appears in (24) is intimately related to the phase φ(α, β) of the
displacement operator (9). Let us impose the natural condition that the sum of the Wigner
function along the line β = µα + ν is equal to the average value of the density matrix over the
state

∣∣ψµ
ν

〉
associated with that line [1]:

1

d

∑
α,β∈GF(d)

W(α, β)δβ,µα+ν = 〈ψµ
ν

∣∣ ρ ∣∣ψµ
ν

〉
, (46)

where

W(α, β) = Tr[ρ	(α, β)]. (47)
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According to the general construction, the state
∣∣ψµ

ν

〉
is obtained by application of the operator

Vµ,ν to the state |0〉: ∣∣ψµ
ν

〉 = Vµ,ν |0〉. After simple algebra we transform the left-hand side of
(46) as follows:

1

d

∑
α,β∈GF(d)

W(α, β)δβ,µα+ν = 1

d

∑
α∈GF(d)

W (α,µα + ν)

= 1

d

∑
κ,λ∈GF(d)

ρκ,λφ(µ−1(−κ + λ),−κ + λ)χ(µ−1(κ + λ)(λ + ν)), (48)

where ρ =∑κ,λ ρκ,λ|κ〉〈λ|; meanwhile the right-hand part is converted into〈
ψµ

ν

∣∣ ρ ∣∣ψµ
ν

〉 = 〈0|V †
µX†

νρXνVµ|0〉
= 1

d2

∑
κ,κ ′,τ,υ∈GF(d)

ρτ,υc∗
κ,µcκ ′,µχ(−κ(τ − ν) + κ ′(υ − ν)).

Taking into account relation (29), the above equation can be rewritten as follows:〈
ψµ

ν

∣∣ ρ ∣∣ψµ
ν

〉 = 1

d

∑
κ,λ

ρκ,λcµ−1(−κ+λ),µχ(µ−1(κ + λ)(λ + ν)). (49)

Comparing (48) and (49) we observe that φ(µ−1(−κ + λ),−κ + λ) = cµ−1(−κ+λ),µ, or in a
compact form

φ(τ, υ) = cτ,τ−1υ. (50)

Also, we impose the conditions φ (τ, 0) = φ (0, υ) = 1, which mean that the displacements
along the axes α and β, which are performed by applying Zκ and Xλ operators correspondingly,
do not generate any phase.

This immediately implies that for fields of odd characteristic

φ(τ, υ) = χ(−2−1τυ), (51)

and condition (11) is automatically satisfied. Thus, the displacement operator in this case has
the form

D(α, β) = χ(−2−1αβ)ZαXβ (52)

so that the unitary condition D†(α, β) = D(−α,−β) is satisfied and the kernel (13) can be
represented in the familiar form

	(α, β) = D(α, β)PD†(α, β),

where

P = 1

d

∑
α,β∈GF(d)

D(α, β), P |α〉 = | − α〉,

is the parity operator.
In general, for a density matrix defined in the standard basis |α〉 as

ρ =
∑

µ,ν∈GF(d)

ρµ,ν |µ〉 〈ν|, (53)

the Wigner function takes the form

Wρ(α, β) = 1

d

∑
γ,µ,ν∈GF(d)

χ (γ (ν − β) + α (ν − µ)) φ (γ, ν − µ) ρµ,ν, (54)
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which still can be simplified (summed over γ ) for the fields of odd characteristics taking into
account the explicit expression (51) for the phase φ.

Nevertheless, for the fields of even characteristic, d = 2n, there is a freedom in the election
of the phase φ, which takes values ±1,±i, related to different possibilities of choosing the
rotation operators Vµ,ν = VµXν for the phase space construction. Once the set {Vµ,ν} of
rotation operators is fixed we can find the phase φ from (50) and thus construct the Wigner
function (54).

Using relation (47) we can find the Wigner function for the state (43) corresponding to the
line β = µα + ν. First of all, using (27) and the property 〈κ̃|λ〉 = χ(−κλ)/d1/2, we rewrite
the state

∣∣ψµ
ν

〉
as follows:∣∣ψµ

ν

〉 = 1√
d

∑
κ∈GF(d)

cκ,µχ(−κν)|κ̃〉 = 1

d

∑
κ,λ∈GF(d)

cκ,µχ(κ (λ − ν))|λ〉.

Then, from (13) and (47) we obtain after long but straightforward algebra,

W|ψµ
ν 〉(α, β) = 〈ψµ

ν

∣∣	(α, β)
∣∣ψµ

ν

〉 = δβ,µα+ν,

for fields of both odd and even characteristic independently of the choice of the rotation
operator in the last case.

3.6. Non-uniqueness of the Wigner function

It is worth noting that the Wigner function constructed using different distributions of signs
in Vµ operators are not trivially related to each other. This difference is of fundamental
significance for fields of even characteristic (because there is no natural choice of the set of
rotation operators), although similar considerations can also be taken into account for fields
of odd characteristic (if a different set of rotation operators to (33) is used for the phase-space
construction).

In the rest of this section we will focus on fields of even characteristic. Let us fix the
operators Vµ according to (37) and choose some other set, so that Vµ,h(µ) = VµXh(µ), where
h(µ) is an arbitrary function satisfying the following conditions: (a) h(0) = 0, which basically
means that even after changing the rotation operators, the displacement operators along the
axes α and β have no phases, D (α, 0) = Zα,D (0, β) = Xβ ; (b) the non-singularity:
αh(α−1β) = 0, if α = 0 for any β ∈ GF(2n), which implies that the coefficient c0,µ

in (27) is fixed, c0,µ = 1, for all Vµ. The simplest example of such a function can be
given in the case where rotation operators are labelled with powers of a primitive element σ :
{Vµ,µ ∈ GF(2n)} = {Vσk , k = 1, . . . , 2n − 1}, then h(σ k) = σm(k), where m is a natural
number which depends on the value of k.

The Wigner function constructed using the new rotation operators Vµ,ν has the form

W ′
ρ(α, β) = Tr[ρ	′(α, β)], 	′(α, β) = 1

2n

∑
κ,λ∈GF(2n)

χ(αλ − βκ)D′(κ, λ),

where

D′(κ, λ) = c′
κ,κ−1λZκXλ,

and c′
κ,ξ are the matrix elements (27) of Vµ,h(µ) in the conjugate basis |α̃〉, so that

c′
κ,κ−1λ = χ(κh(κ−1λ))cκ,κ−1λ.

Then, we have

D′(κ, λ) = χ(κh(κ−1λ))cκ,κ−1λZκXλ

= cκ,κ−1λXh(κ−1λ)ZκXh(κ−1λ)Xλ

= Xh(κ−1λ)D(κ, λ)Xh(κ−1λ).
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After some simple algebra we obtain the ‘new’ Wigner function W ′
ρ(α, β) in terms of the

coefficients of expansion (53),

W ′
ρ(α, β) = 1

2n

∑
µ,ν,γ∈GF(2n)

ρµ,ν (55)

χ(α(ν − µ) − βγ + γ h(γ −1(ν − µ)) + γ ν)φ(γ, ν − µ), (56)

which is related to the ‘old’ Wigner function (constructed with Vµ operators) as follows:

W ′
ρ(α, β) = 1

2n

∑
γ ′∈GF(2n)

γ �=0

Wρ(α + γ h(γ −1) + γ γ ′, β + γ ′) (57)

+
1

2n

∑
β∈GF(2n)

Wρ(α, β) +
1

2n

∑
α∈GF(2n)

Wρ(α, β) − 1. (58)

Note that

p(α) =
∑

β∈GF(2n)

Wρ(α, β), p̃(β) =
∑

α∈GF(2n)

Wρ(α, β)

are the marginal probabilities to detect the system at the states |α〉 and |β̃〉, respectively.
It is clear that the sum of the ‘new’ Wigner function over a line β = µα + ν gives

the same result as the sum of the ‘old’ Wigner function over the points of the shifted line
β = µα + ν + h (µ):∑

α,β∈GF(2n)

W ′(α, β)δβ=µα+ν =
∑

α,β∈GF(2n)

W(α, β)δβ=µα+ν+h(µ).

For a particular choice h (µ) = κ - const, h(0) = 0, we find that the new Wigner function
has the form

W ′
ρ(α, β) = Wρ (α, β + κ) − ρβ+κ,β+κ + ρβ,β . (59)

For a more complicated case h (ξ) = κξ , the Wigner function acquires the following form:

W ′
ρ(α, β) = Wρ (α + κ, β) +

1

2n
p(α) − 1

2n
p(α + κ).

As we have seen above, the Wigner function of any state of the form (53) with ρµ,ν = qµδµ,ν

does not depend on the choice of sign (and thus is uniquely defined), as can be observed
directly from (55) in the case of GF(2n).

As a non-trivial example of essentially different Wigner functions which can be associated
with the same state let us consider a particular case of real symmetric density matrices
ρµ,ν = ρν,µ. For this class of states the Wigner function (55) can be rewritten in the following
explicitly symmetric form:

W ′
ρ(α, β) = 1

2n+1

∑
µ �=ν∈GF(2n)

γ �=0

ρµ,νχ(α(ν + µ) + βγ + γ h(γ −1(ν + µ)))

×φ(γ, ν + µ)[χ(γ ν) + χ(γµ)] +
1

2n

∑
µ �=ν∈GF(2n)

ρµ,νχ(α(ν − µ)) + ρβ,β .

Now, we observe from the above equation that if the factor [χ (γ ν) + χ (γµ)] is zero, the
Wigner function obviously does not depend on the choice of the function h (ν). Thus, two



Geometrical approach to the discrete Wigner function in prime power dimensions 14485

Wigner functions corresponding to functions h1(ν) and h2 (ν) are the same if simultaneously
χ(γ h1(γ

−1(ν + µ))) = χ(γ h2(γ
−1(ν + µ))) and χ(γ ν) + χ(γµ) �= 0 or, in other words,

tr(γ [h1(γ
−1(ν + µ)) + h2(γ

−1(ν + µ))]) = 0, (60)

tr(γ [µ + ν]) = 0, (61)

where γ �= 0 and µ �= ν.
For instance, consider the state |ψ〉 = (|0〉 + |σ 3〉)/√2 in the case GF(22) and fix the

irreducible polynomial as σ 2 + σ + 1 = 0. The indices µ and ν in (60)–(61) take values 0
and σ 3, so that µ + ν = σ 3, and thus it follows from (61) that the only admissible value of γ

is γ = σ 3. Then, condition (60) leads to the following equation for the functions h1(ν) and
h2(ν):

h1(σ
3) + h2(σ

3) = σ 3. (62)

The first set of solutions is h1(σ
3) = σ, h2(σ

3) = σ 2 and correspondingly h1(σ
3) =

σ 2, h2(σ
3) = σ . This means that two sets of rotation operators

1. XκVσ ,XλVσ 2 , Xσ Vσ 3 , (63)

2. Xκ ′Vσ ,Xλ′Vσ 2 , Xσ 2Vσ 3 , (64)

where κ, κ ′, λ, λ′ ∈ GF(22) lead to the same Wigner function. Note that the constants
κ, κ ′, λ, λ′ are arbitrary elements of GF(22) because there are no restrictions imposed either
on h(σ) or h(σ 2).

The second set of solutions of (62) is h1(σ
3) = σ 3, h2(σ

3) = 0 and, correspondingly,
h1(σ

3) = 0, h2(σ
3) = σ 3, so that the rotation operators,

3. Xκ ′′Vσ ,Xλ′′Vσ 2 , Xσ 3Vσ 3 , (65)

4. Xκ ′′′Vσ ,Xλ′′′Vσ 2 , Vσ 3 , (66)

with κ ′′, κ ′′′, λ′′, λ′′′ ∈ GF(22) produce the same Wigner functions.
Finally, there are only two different Wigner functions to represent the state |ψ〉 =

(|0〉 + |σ 3〉)/√2 (compare with [5]). It is worth noting that this state is labelled by the
elements of the field GF(22) and thus has no direct relation to the physical state, until the
basis for the field representation is fixed (see section 6).

In figure 1(a) we plot the Wigner function for the state |ψ〉 = (|0〉 + |σ 3〉)/√2 using the
following choice of the rotation operators

Vσ = Diag(1, 1, i,−i), Vσ 2 = Diag(1, i,−1, i), Vσ 3 = Diag(1, i,−i, 1),

which corresponds to the case (64) with Xκ ′ = I,Xλ′ = Xσ 2 .
In figure 1(b) we plot the Wigner function for the same state but using another choice of

the rotation operators

Vσ = Diag(1, 1, i,−i), Vσ 2 = Diag(1, i, 1,−i), Vσ 3 = Diag(1, i, i,−1),

corresponding to the case (66) with Xκ ′′′ = Xλ′′′ = I.

Obviously, for larger fields the variety of Wigner functions for a given state rapidly grows
with the dimension of the field even for highly symmetrical states. For instance, the state
|ψ〉 = (|0〉 + |σ 7〉)/√2 labelled with elements of GF(23) can be represented in eight different
ways. In figures 2(a)–(h) we plot Wigner functions for different non-trivial choices of the set
of rotation operators, where the initial ‘bare’ set of rotation operators is fixed as follows,
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Figure 1. (a)–(b) Wigner function for the state |ψ〉 = 1√
2

[|0〉 + |σ 3〉] defined on GF(22).

The set of rotation operators: (a) Vσ = Diag(1, 1, i, −i), Vσ 2 = Diag(1, i, −1, i), Vσ 3 =
Diag(1, i,−i, 1); (b) Vσ = Diag(1, 1, i, −i), Vσ 2 = Diag(1, i, 1,−i), Vσ 3 = Diag(1, i, i, −1).

Vθ = Diag(1, 1, 1, i, i,−i,−1, i), Vσ 2 = Diag(1, i, 1,−i, 1,−1, i, i), (67)

Vσ 3 = Diag(1, 1, i, i,−i,−1, i, 1), Vσ 4 = Diag(1, 1, i,−1, 1, i,−i, i), (68)

Vσ 5 = Diag(1, i, i,−i,−1, i, 1, 1), Vσ 6 = Diag(1, i, 1,−1,−i,−i,−i, 1) (69)

Vσ 7 = Diag(1, i, i, 1,−i, 1,−1, i), (70)

and the minimal polynomial is chosen as σ 3 + σ 2 + 1 = 0.
For fields of odd characteristic, in the whole group {VµXν, µ, ν ∈ GF(pn)} a subgroup

containing only rotation operators {Vµ,µ ∈ GF(pn)} can be separated, which allows us to
construct the phase space as outlined in previous sections, so that the Wigner function is
uniquely defined for a given state. Nevertheless, the whole group can be used for phase-space
construction as well, which would lead to non-uniqueness in the definition of the Wigner
function, very similar to (57).

For an arbitrary state, we can easily calculate a total number of possible Wigner functions
which represent this state in the discrete phase space. According to the present construction, we
fix the phase of the state corresponding to the horizontal line (42). Also, we fix the property (7)
of the Fourier transform operator (6), i.e. the Fourier transformation of Zα operators generate
Xα operators without any phase factor (which in principle is not necessary if the property
F 4 = I for d = pn, where p �= 2 and F 2 = I for d = 2n is not required). Now, we can
generate all the possible Wigner functions choosing (d − 1) different rotation operators VµXν

(both for fields of odd and even characteristics), which gives dd−1 different structures (which
is directly related to different quantum nets introduced in [2]). Nevertheless, the symmetry of
the state can essentially reduce the number of different Wigner functions.

4. Reconstruction procedure

It is well known that the Wigner function can be reconstructed using projective measurements,
associated with a summation over the lines [1, 20]. In this section we explicitly relate the
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Figure 2. (a)–(h) Wigner function for the state |ψ〉 = 1√
2

[|0〉 + |σ 7〉] defined on GF(23). The

set of rotation operators: (a) Vσ , Vσ 2 , Vσ 3 , Vσ 4 , Vσ 5 , Vσ 6 , Vσ 7 , where Vσn are defined in (67)–
(70); (b) Xσ Vσ , Vσ 2 , Vσ 3 , Vσ 4 , Vσ 5 , Vσ 6 , Vσ 7 ; (c) Xσ Vσ , Xσ 2 Vσ 2 , Vσ 3 , Vσ 4 , Vσ 5 , Vσ 6 , Vσ 7 ;
(d) Xσ Vσ , Xσ 2 Vσ 2 , Vσ 3 , Xσ 4 Vσ 4 , Vσ 5 , Vσ 6 , Vσ 7 ; (e) Xσ 4 Vσ , Xσ 2 Vσ 2 , Vσ 3 , Xσ 4 Vσ 4 , Vσ 5 , Vσ 6 ,

Vσ 7 ; (f ) Xσ 4 Vσ , Xσ Vσ 2 , Vσ 3 , Xσ 4 Vσ 4 , Vσ 5 , Vσ 6 , Vσ 7 ; (g) Xσ 7 Vσ , Xσ Vσ 2 , Vσ 3 , Xσ 7 Vσ 4 , Vσ 5 ,

Vσ 6 , Vσ 7 ; (h) Xσ 3 Vσ ,Xσ 7 Vσ 2 , Vσ 3 , Xσ 5 Vσ 4 , Vσ 5 , Vσ 6 , Vσ 7 .

elements of the density matrix with the corresponding tomogram, the averages of the form〈
ψµ

ν

∣∣ρ∣∣ψµ
ν

〉 = ω(µ, ν).
Let us start with the relation of the tomogram ω(µ, ν) with the Wigner function,

ω(µ, ν) = 1

d

∑
α,β∈GF(d)

W(α, β)δβ,µα+ν = 1

d

∑
α∈GF(d)

W(α,µα + ν), (71)

and consequently with the components of the density matrix in the basis of the displacement
operators (16), which is obtained by taking into account relation (17):

ω(µ, ν) =
∑

κ∈GF(d)

ρκ,µκχ(κν).

The above equation can immediately be inverted using (4),

ρκ,µκ = 1

d

∑
ν∈GF(d)

ω(µ, ν)χ(−κν),
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Figure 2. (Continued.)

or, changing the indices

ρκ,λ = 1

d

∑
ν∈GF(d)

ω(κ−1λ, ν)χ(−κν),

where κ �= 0.
To reconstruct the matrix element ρ0,λ we have to use the results of measurements in the

conjugate basis |̃κ〉,

ω (κ) = 〈̃κ|ρ |̃κ〉 = 1

d

∑
α,β∈GF(d)

W(α, β)δα,κ =
∑

λ∈GF(d)

ρ0,λχ(−κλ),

which leads to

ρ0,λ = 1

d

∑
κ∈GF(d)

ω(κ)χ(κλ).
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5. Ordering the points on the axes

In order to plot the Wigner function we have to choose an arrangement of the field elements
and take it into account to fix the order of the elements on the axes in the finite plane
GF(d) × GF(d). When the dimension of the system is a prime number there is a natural
ordering of the elements, i.e. for any a, b ∈ Zp, a �= b there is a relation either a < b or
a > b, so that the points on the axes can be enumerated. For instance, in the case of Z5 the
elements are arranged as {0, 1, 2, 3, 4}.

For field extensions there is no natural ordering of elements; however, there are several
possibilities of arranging the elements of the field. The most common choice is an ordering
according to powers (which are natural numbers and thus can be naturally ordered) of some
primitive element. Nevertheless, the primitive element, in general, is not unique. Actually,
for the d-dimensional system there are φ (d − 1) primitive elements, where φ (r) is Euler’s
function, which indicates the number of integers with 1 � n � r which are relatively prime
to r [7].

As another possibility we can enumerate the points on the axes according to the following
procedure: firstly, we fix that the origin corresponds to the point (0, 0); secondly, we
choose some basis {σ1, σ2, . . . , σn} in the field GF(pn) and expand elements in this basis:
α = ∑n

j=1 ajσj , aj ∈ Zp. Now, we arrange the expansion coefficients in a sequence to form
a number on the base p (binary, ternary system, etc) starting with the coefficient an taking the
leftmost place; it will be followed by an−1 and so on; obviously, a1 takes the rightmost place.
The full number is (anan−1 . . . a1)p and it can be transformed into some integer in the decimal
basis using the standard procedure: (a1 × p0) + (a2 × p1) + · · · + (an × pn−1). This procedure
is obviously not unique due to the existence of different bases in the field. As an example,
let us take GF(23), the choice of the irreducible polynomial as x3 + x2 + 1 = 0, and use the
normal self-dual basis {σ, σ 2, σ 4}; in this basis the field elements are

θ = θ, θ2 = θ2,

θ3 = θ + θ4, θ4 = θ4,

θ5 = θ2 + θ4, θ6 = θ + θ2,

θ7 = θ + θ2 + θ4, 0.

Now, we can associate each element with a number in the binary system:

θ → (100)2 → (4)10, θ2 → (010)2 → (2)10,

θ3 → (101)2 → (5)10, θ4 → (001)2 → (1)10,

θ5 → (011)2 → (3)10, θ6 → (110)2 → (6)10,

θ7 → (111)2 → (7)10, 0 → (000)2 → (0)10.

So, we arrange the points on the axes using the above ordering according to {0, θ4, θ2, θ5, θ,

θ3, θ6, θ7}.
Another possibility for arranging the elements of the field is in accordance with the value

of the trace of each element (which is a natural number) [10] and inside the set of the elements
with the same trace we can use any of the above-mentioned ordering, say powers of a primitive
element.

6. From abstract states to physical states

In applications we have to establish a relation between abstract states labelled with elements
of the field and states of a given physical system. Such interrelation strongly depends on the
character of a system, for instance, if the system is actually a single ‘particle’ with pn energy
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levels or it consists of n ‘particles’ (degrees of freedom) with p energy levels. In the last case
the mapping Hd ⇔ Hp ⊗ Hp . . . ⊗ Hp from the abstract Hilbert space to n-particle vector
space can be achieved by expanding an element of the field in a convenient basis {σ1, . . . , σn}:
α = a1σ1 + · · · + anσn, aj ∈ Zp, so that

|α〉 → |a1〉1 ⊗ · · · ⊗ |an〉n ≡ |a1, . . . , an〉,
and the coefficients aj play the role of quantum numbers of each particle. For instance, in
the case GF(22) the state (|0〉 + |σ 3〉)/√2 corresponds to the physical state (|00〉 + |10〉)/√2
in the polynomial basis (1, σ ), whereas in the self-dual basis (σ, σ 2) it is associated with
(|00〉 + |11〉)/√2. Observe that while one state is factorizable, the other one is entangled.
Also, it is worth noting that in the case of GF(23) the state (|0〉 + |σ 7〉)/√2, studied in
section 3.6, corresponds to the physical state (|000〉 + |111〉)/√2 in the self-dual basis, which,
for the primitive polynomial x3 + x2 + 1 = 0, has the form (σ, σ 2, σ 4).

This implies that all the operators Zβ are factorized into a product of single particle Z
operators (5), Zβ = Zb1 ⊗· · ·⊗Zbn , where β = b′

1σ
′
1 + · · ·+b′

nσ
′
n and {σ ′

1, . . . , σ
′
n} is the basis

which is dual to {σ1, . . . , σn} (see appendix A) and b′
i ∈ Zp. To have a better understanding

of this aspect let us recall the definition of the operator Zα ,

Zα =
∑

β∈GF(d)

χ(αβ)|β〉〈β|,

and choose a basis {σ1, . . . , σn} to expand β. Then, taking α = σ ′
i as an element of the dual

basis, we obtain

Zσ ′
i
=

∑
β∈GF(d)

χ(σ ′
i β)|β〉〈β| = �n

j=1

p−1∑
bj =0

exp

(
2π i

p
tr(σ ′

i σj )

)
|bj 〉〈bj |.

Now, if (a) i �= j the duality means tr(σ ′
i σj ) = 0, and thus

p−1∑
bj =0

exp

(
2π i

p
bj tr(σ ′

i σj )

)
|bj 〉〈bj | =

p−1∑
bj =0

|bj 〉〈bj | = Ij ,

where the index j means the j th particle;
(b) i = j we have tr(σ ′

i σi) = 1 and then,
p−1∑
bi=0

exp

(
2π i

p
bi tr(σ ′

i σi)

)
|bi〉〈bi | =

p−1∑
bi=0

exp

(
2π i

p
bi

)
|bi〉〈bi | = Zi.

Finally, we obtain the factorization

Zσ ′
i
= I1 ⊗ · · · ⊗ Ii−1 ⊗ Zi ⊗ Ii+1 ⊗ · · · In,

i.e. one Z operator is located in the ith place, and all the other entries are unity.
In particular, making use of an almost self-dual basis (see appendix A),

β =
n∑

j=1

bjσj , tr(σiσj ) = qj δij , bj , qj ∈ Zp, (72)

where qj �= 1 only for a single basis element (say qn = q �= 1), we have

Zβ = ⊗�n
j=1Z

bj qj = Zb1 . . . Zbn−1Zqbn . (73)

On the other hand, in any almost self-dual basis the Xβ operator is a factorized product of
single particle X operators (5) in an obvious way. It is clear that

Xσi
=

∑
β∈GF(d)

|β + σi〉 〈β| = I1 ⊗ · · · ⊗ Ii−1 ⊗ Xi ⊗ Ii+1 ⊗ · · · In,
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where we use expansion (72) for β, thus

Xβ = ⊗�n
j=1X

bj . (74)

The above equation is a result of relation (7) and factorization of the finite Fourier transform
operator (6) in the almost self-dual basis,

F = ⊗�n−1
j=1Fj ⊗ F̃ n,

where

F̃ n = 1√
p

p−1∑
m,k=0

ω(qmk)|m〉〈k|.

For instance, in the case of GF(32) (when the self-dual basis does not exist) the Fourier
operator is factorized into F = F1 ⊗ F

†
2 in the almost self-dual basis {θ2, θ4}, where θ is a

root of the irreducible polynomial x2 + x + 2 = 0.
Obviously, in the self-dual basis F is factorized into a product of single particle Fourier

operators, F = ⊗�n
j=1Fj .

Besides, the kernel operator (13) for char GF(d) �= 2, acquires the form

	(α, β) = 1

d

∑
γ,δ∈GF(d)

χ(αδ − βγ − 2−1γ δ)Zγ Xδ,

and thus can easily be factorized into one-particle operators in any almost self-dual basis. In
fact, due to equations (73), (74) and factorization of the generalized character

χ(αδ) = �n
j=1ω(αjδjqj ),

where αj , δj ,∈ Zp are coefficients of expansion of α and δ respectively in an almost self-dual
basis

α =
p−1∑
j=0

αjσj , δ =
p−1∑
j=0

δjσj ,

and tr
(
σ 2

j

) = qj = (q − 1)δjn + 1. Taking into account (A.2), we have

	(α, β) =
n∏

i=1


 1

p

∑
γi ,δi∈GF(d)

χ((αiδi − βiγi − 2−1γiδi)qi)Z
γiqi Xδi




= ⊗
n−1∏
i=1

	(αi, βi) ⊗ 	(qαn, βn).

So that, in any self-dual basis 	(α, β) = ⊗�n
i=1	(αi, βi).

In the case of a single ‘particle’ the states of a physical system can be labelled by the
elements of the field arranged in some order (0, α1, . . . , αpn−1) (see previous section). Then,
the free Hamiltonian of the system takes on the form

H = E0|0〉〈0| + E1|α1〉〈α1| + · · · + Epn−1 |αpn−1〉〈αpn−1 |,
where the energies are arranged in the non-decreasing order: E0 � E1 � · · · � Epn−1 .
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7. Conclusions

In this paper, we have studied an explicit form of the kernel operator (the phase point operator
[1, 2]) which maps states of a quantum system of dimension d = pn into a Wigner function in a
discrete phase space. The crucial point in the phase space construction is played by the rotation
and displacement operators labelled with elements of GF(d). These operators are explicitly
related after imposing condition (46) and allow us to establish a clear correspondence between
states in the Hilbert space of the system and lines in the discrete phase space. The structure
of the rotation operators is quite different for fields of odd and even characteristic. While for
the fields of odd characteristic the rotation operators form a pn-dimensional Abelian group,
the corresponding group in the case of GF(2n) is of order 22n and includes both ‘rotation’
and ‘vertical’ displacement operators Xµ,µ ∈ GF(2n). So that although for a particular
phase-space construction the group property is not really necessary, different choices of sets
of rotation operators lead to different Wigner functions, which is directly connected to the
freedom in the election of quantum nets in the Wootters’ construction [2]. Such freedom
obviously exists also in the case of odd characteristics, which nevertheless can be avoided by
fixing the rotation group in a natural way (33).
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Appendix A. Finite fields

A set L is a commutative ring if two binary operations: addition and multiplication (both
commutative and associative) are defined.

A field F is a commutative ring with division, i.e. for any a ∈ F there exists a−1 ∈ F

so that a−1a = aa−1 = I (excluding the zero element). The elements of a field form groups
with respect to addition F and multiplication F ∗ = F − {0}.

The characteristic of a finite field is the smallest integer p, so that p · 1 = 1 + 1 + · · · + 1︸ ︷︷ ︸
p times

=

0 and it is always a prime number. Any finite field contains a prime subfield Zp and has pn

elements, where n is a natural number. Moreover, the finite field containing pn elements is
unique and is usually called a Galois field, GF(pn). GF(pn) is an extension of degree n
of Zp, i.e. elements of GF(pn) can be obtained with Zp and all the roots of an irreducible
polynomial (that is, one which cannot be factorized in Zp) with coefficients inside Zp.

The multiplicative group of GF(pn) : GF(pn)∗ = GF(pn) − {0} is cyclic θpn = θ, θ ∈
GF(pn). The generators of this group are called primitive elements of the field.

A primitive element of GF(pn) is a root of an irreducible polynomial of degree n over
Zp. This polynomial is called a minimal polynomial.

The trace operation

tr(α) = α + α2 + · · · + αpn−1

maps any field element into an element of the prime field, tr : GF(pn)
α

→ Zp

tr(α)

, and satisfies

the property

tr(α1 + α2) = tr(α1) + tr(α2). (A.1)
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The additive characters are defined as

χ(α) = exp

[
2π i

p
tr (α)

]
,

and possess two important properties:

χ(α1 + α2) = χ(α1)χ(α2)

and ∑
α∈GF(pn)

χ(α) = 0.

Any finite field GF(pn) can be considered as an n-dimensional linear vector space and
there is a basis {σj , j = 1, . . . , n} in this vector space, so that any α ∈ GF(pn), α =∑n

j=1 ajσj and aj ∈ Zp. Then, for any f (α) one has∑
α∈GF(pn)

f (α) =
∑

a1,...,an

f (a1σ1 + · · · + anσn). (A.2)

There are several bases, one of which is the polynomial basis {1, θ, θ2, . . . , θn−1}, where
θ is a primitive element of GF(pn); another one is the normal basis {θ, θp, . . . , θpn−1}, so one
can choose whichever according to the specific problem.

The two bases {α1, . . . , αn} and {β1, . . . , βn} in the same field are dual if tr(αiβj ) = δij .
A basis which is dual to itself is called self-dual basis, tr(αiαj ) = δij .

Example. GF(22), the primitive polynomial is x2 + x + 1 = 0, it has the roots {θ, θ2}.
The polynomial basis is {1, θ}, whose dual basis is {θ2, 1}:

tr(1θ2) = 1, tr(11) = 0,

tr(θθ2) = 0, tr(θ1) = 1.

The normal basis {θ, θ2} is self-dual:

tr(θθ) = 1, tr(θθ2) = 0,

tr(θ2θ) = 0, tr(θ2θ2) = 1.

The self-dual basis cannot always be found and the following theorem applies.
Theorem [21]. For every prime power d = pn, there exists an almost self-dual basis of

GF(pn) over Zp. Moreover, it has a self-dual basis if and only if either p is even or both n
and p are odd.

The almost self-dual basis satisfies the properties tr(θiθj ) = 0 when i �= j and tr
(
θ2
i

) = 1,
with one possible exception. For instance, in the case of GF(32) two elements {θ2, θ4}, θ
being a root of the irreducible polynomial x2 + x + 2 = 0, form an almost self-dual basis, i.e.

tr(θ2θ2) = 1, tr(θ4θ4) = 2, tr(θ2θ4) = 0.

Appendix B. Solution of the equation cκ+α,µc∗
κ,µ = cα,µχ(µακ) in the d = 2n case

To solve equation (29) we first fix a basis in the field GF(2n): {σj , j = 1, . . . , n}, so that any
element of the field can be represented as a linear combination

α =
n∑

j=1

ajσj , aj ∈ Z2. (B.1)

Then, we solve the equation (34) c2
κ,µ = χ(κ2µ) for the n basis elements cκ,µ, κ = σ1, . . . , σn,

assigning in an arbitrary way the signs ±1 to the square root
√

χ(κ2µ). This means that there
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exist 2n different sets of {cκ,µ}, and thus 2n different operators Vµ (for a fixed value of µ), which
can be precisely parameterized as in equation (30). Once the signs of cκ,µ, κ = σ1, . . . , σn, are
fixed, the rest of the 2n − n coefficients cκ,µ can be found using expansion (B.1) and relation
(29) in the form cκ+α,µ = cκ,µcα,µχ(−µακ) leading to the following result:

cα,µ = ca1σ1+···+anσn,µ = ca1σ1,µca2σ2+···+anσn,µχ (a1σ1 (a2σ2 + · · · + anσn) µ)

= · · · = χ


µ

n−1∑
k=1

akσk

n∑
j=k+1

ajσj


�n

l=1calσl ,µ,

and c0,µ = 1.
To illustrate how this procedure works let us apply it to the case of GF(22). We choose

the normal, self-dual, basis {θ, θ2} (see appendix A) in GF(22), where θ is a root of the
primitive polynomial x2 + x + 1 = 0, so that θ3 = θ + θ2. The solution of equation (34) for,
say µ = θ3 = 1, is (below we will omit the index µ in the coefficients cα,µ)

c0 = 1, cθ = ±i, cθ2 = ±i.

Then, the last coefficient is given by

cθ3 = cθ+θ2 = cθcθ2χ (1) = (±i) (±i) (1) ,

and one can see that there exist 4 different possible operators Vθ3 . A similar calculation can
be made for the operators Vθ and Vθ2 .

It is convenient to fix the positive signs of the coefficients cκ,µ corresponding to the
elements of the field basis, i.e. calσl ,µ = √

χ(a2
l σ

2
l µ), l = 1, . . . , n, and form the ‘first’ set of the

rotation operators, Vµ with these coefficients. Then, all the other sets of Vµ,ν can be obtained
according to (30).

Once we have the coefficients cα,µ one can easily obtain the corresponding phase factors
for the displacement operator (50). For instance, fixing the ‘first’ set of rotation operators in
the above example as

Vθ = diag(1, 1, i,−i), Vθ2 = diag(1, i, 1,−i), Vθ3 = diag(1, i, i,−1), (B.2)

we obtain the following phase factors appearing in the displacement operator:

φ(θ, θ) = i, φ(θ, θ2) = 1, φ(θ, θ3) = i,

φ(θ2, θ) = 1, φ(θ2, θ2) = i, φ(θ2, θ3) = i,

φ(θ3, θ) = −i, φ(θ3, θ2) = −i, φ(θ3, θ3) = −1.

Another set of rotation operators can be obtained, for instance, by keeping Vθ and Vθ2 as in
the above and multiplying the operator Vθ3 in (B.2) by Xθ :

Vθ = diag(1, 1, i,−i), Vθ2 = diag(1, i, 1,−i), Vθ3 = diag(1,−i, i, 1),

which leads to some changes in the phases of the displacement operator:

φ(θ, θ) = −i, φ(θ, θ2) = 1, φ(θ, θ3) = i,

φ(θ2, θ) = 1, φ(θ2, θ2) = i, φ(θ2, θ3) = i,

φ(θ3, θ) = −i, φ(θ3, θ2) = −i, φ(θ3, θ3) = 1.
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Appendix C. Determination of f (µ, µ′)

In practice, the function f (µ,µ′) is determined by solving the following equation,

cα,µcα,µ′ = χ(αf (µ,µ′))cα,µ+µ′ , (C.1)

for all values of α belonging to the basis of the field. The rest of the elements of the field do
not provide additional information due to (29).

As an example we consider the case of GF(22). Following the general procedure,
we choose the self-dual basis (θ, θ2) in the field and fix the rotation operators as in (B.2).
Equation (C.1) for f (θ, θ) has the form

cα,θ cα,θ = χ (αf (θ, θ)) cα,0,

and for different values of the parameter α we get

α = θ, 1 · 1 = χ(θf (θ, θ))1,

α = θ2, i · i = χ(θ2f (θ, θ))1,

leading to the only possible solution f (θ, θ) = θ2.
Similarly we obtain for the rest of the f (µ,µ′) :
for f (θ, θ2)

α = θ, 1 · i = χ(θf (θ, θ2))i,

α = θ2, i · 1 = χ(θ2f (θ, θ2))i,

so that f (θ, θ2) = 0, and following the same idea we can determine

f (θ, θ3) = θ2, f (θ2, θ2) = θ, f (θ2, θ3) = θ, f (θ3, θ3) = θ3.

Appendix D. Other symplectic operators

D.1. U operator

In order to introduce another operator [13] with similar properties to Vµ, let us define that
two lines are orthogonal if the states corresponding to these lines are related via the Fourier
transform

|κ〉 F→ |̃κ〉.
Then, there exists an operator Uµ |̃κ〉 = FVµ|κ〉 such that its geometrical application rotates
the line corresponding to the state |κ〉 (conjugate to |̃κ〉), and then transforms the rotated line
into an orthogonal one. This operator is obtained from Vµ as

Uµ = FVµF † =
∑

κ∈GF(d)

c−κ,µ|κ〉〈κ|, (D.1)

so that UµZαU †
µ = Zα for all α,µ. The action of Uµ on the operator Xβ can be obtained

using the operational relation in (D.1) and relation (7)

UµXβU †
µ = F

(
VµZβV †

µ

)†
F † = exp(−iϕ (β,µ))Z

†
µβXβ, (D.2)

which means that the U-transformation also represents a sort of rotation: operators Uµ′

transform eigenstates of the set of displacement operators labelled with points of the ray
β = µα {

I, Zα1Xµα1 , Zα2Xµα2 , . . .
}

(D.3)



14496 A B Klimov et al

to the eigenstates of the set labelled with points of the ray β = (µ + µ′)−1α{
I, Z(1+µµ′)α1Xµα1 , Z(1+µµ′)α2Xµα2 , . . .

}
. (D.4)

Similarly, as we cannot reach the ray α = 0 using Vµ operators, one cannot reach the ray
β = 0 using Uµ′ operators. Having both operators Uµ′ and Vµ we can transform any ray into
any other.

Let us find the Wigner function of one state transformed by Vµ and Uµ operators. For
fields of odd characteristic, p �= 2, one can use the explicit form (33) of Vµ and after some
algebra we obtain

Wρ̃(α, β) = Wρ (α, β − µα), ρ̃ = VµρV †
µ. (D.5)

In the same manner we evaluate the Wigner function of a state transformed by the Uµ operator,
p �= 2:

Wρ̃(α, β) = Wρ(α − µβ, β), ρ̃ = UµρU †
µ. (D.6)

In other words, the transformation of a state by the Vµ and/or the Uµ operators leads to a
covariant transformation of the Wigner function for the fields of odd characteristics.

D.2. S operator

The last operator which transforms the operators labelled with points of one line into the
operators labelled with the points of some other line is the so-called squeezing operator, which
in the basis of eigenstates of Zα operators has the following form:

Sξ =
∑

κ∈GF(pn)

|κ〉〈ξκ|. (D.7)

It is easy to see that

Wρ̃(α, β) = Wρ(ξα, ξ−1β), ρ̃ = SξρS
†
ξ .

The squeezing operator naturally appears as a result of the consecutive application of Vµ

and Uν :

Wρ ′ = W
Sξ ρS

†
ξ
, ρ̃ = V−ξ(ξ−1)µ−1U−ξ−1µV(ξ−1)µ−1UµρU †

µV
†
(ξ−1)µ−1U

†
−ξ−1µ

V
†
−ξ(ξ−1)µ−1 ,

where µ is an arbitrary element of GF(pn)∗, p �= 2.
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